W Boson Polarization in Top Quark Decay at CDF

Trevor Vickey

University of Illinois at Urbana-Champaign
CDF Collaboration

8 April 2003

APS April Meeting, Philadelphia

What Could We Learn?

Testing the weak decay of the top quark

- Expected to be described by the charged-current weak interaction of the Standard Model
 - \triangleright Believed to be purely vector-minus-axial-vector (V-A)
- ullet Higgs mechanism gives rise to the longitudinal polarization state of the W
- ullet Standard Model gives specific predictions for fractions of longitudinal and transverse W bosons in top decay

$$BR(t \to W_{\lambda=0}b) = \frac{m_t^2}{m_t^2 + 2m_W^2} \sim 70\% \qquad BR(t \to W_{\lambda=-1}b) = \frac{2m_W^2}{m_t^2 + 2m_W^2} \sim 30\%$$

Could reveal new physics

- Verify that we have indeed observed the SM top quark
- ullet Test for V+A structure in the charged-current weak interaction
- ullet Longitudinal W is intimately related to EWSB in the SM
 - \triangleright Top quark decay is the only significant source of longitudinal W bosons

What do you mean by "W polarization"?

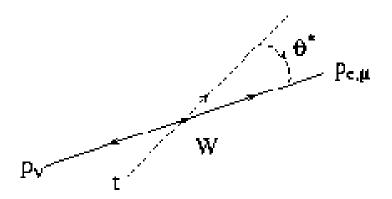
Helicity is the projection of spin along the direction of motion

- This is defined by the helicity operator: $\vec{\sigma} \cdot \hat{p}$
- Helicity value for the W polarization states are then -1 and +1 for $\vec{\epsilon}_L$ and $\vec{\epsilon}_R$, respectively
 - \triangleright Transverse W
- Assume that the direction of motion is \hat{z} , then a W with a polarization of $\vec{\epsilon}_z$ has helicity 0
 - ightharpoonup Longitudinal W

Squares of the various helicity amplitudes

• These are well-known:

$$|\mathcal{M}(W_{\lambda=-1}^+)|^2 = |\mathcal{M}(W_{\lambda=+1}^-)|^2 = \frac{1}{4}(1 - \cos \theta^*)^2$$

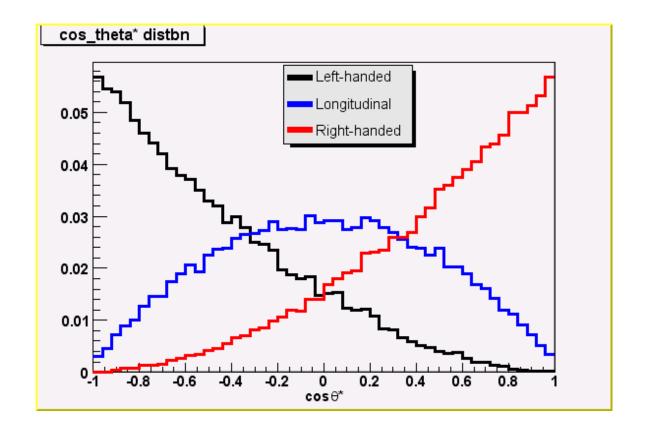

$$|\mathcal{M}(W_{\lambda=+1}^+)|^2 = |\mathcal{M}(W_{\lambda=-1}^-)|^2 = \frac{1}{4}(1 + \cos \theta^*)^2$$

$$|\mathcal{M}(W_{\lambda=0}^+)|^2 = |\mathcal{M}(W_{\lambda=0}^-)|^2 = \frac{1}{2}(\sin \theta^*)^2$$

Techniques for measuring W polarization

The angle θ^*

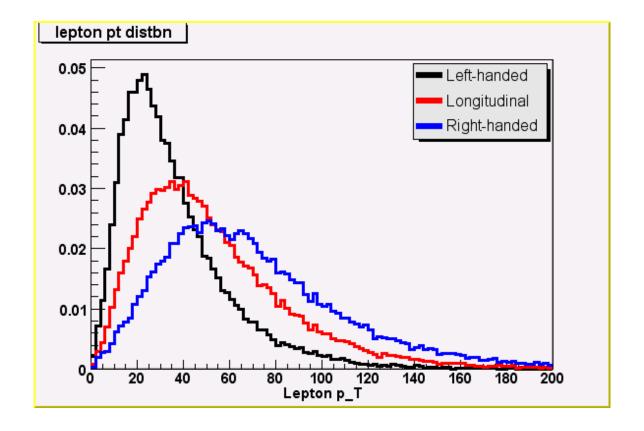
- ullet Defined as the angle between charged-lepton momentum in W rest-frame and the W momentum in the top rest-frame (image)
- We can use the dilepton sample
 - $ightharpoonup t\overline{t}$ events where both W bosons decay to e and/or μ
- We can also use the lepton+jets sample
 - $ightharpoonup tar{t}$ events where only one W decays to e or μ
- Extremely difficult to use the all-hadronic sample for this analysis
 - ▶ We need the charges of the daughter quarks!


At least two methods

Measure the angle $\cos \theta^*$ directly by reconstruction

• We make use of the relation:

$$\cos \theta^* = \frac{2m_{lb}^2}{m_t^2 - M_W^2} - 1$$


 $ightharpoonup m_{lb}$ is the invariant mass of the lepton and the b

Alternatively...

Measure the lepton p_T in the lab frame

- This is the most precisely measured quantity in a non-hadronic top event
- In longitudinal ($\lambda_W=0$) W decay, charged lepton most likely to travel perpendicular to the W momentum (as viewed from the top rest frame)
- In transverse ($\lambda_W = -1$) W decay, charged lepton most likely to travel opposite the W momentum (as viewed from the top rest frame)

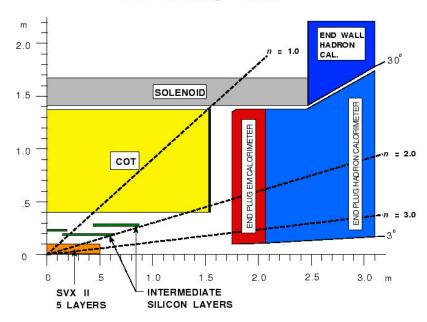
How well can we measure W polarization?

Previous measurement

- ullet Fraction of longitudinal Ws in top decay measured during Run I at CDF
 - \triangleright Using the lepton- p_T method
 - ▶ CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 84 216 (2000).

$$F_{\lambda_W=0} = 0.91 \pm 0.37(stat) \pm 0.13(syst)$$

How well can we do during Run II at CDF?


- Increased $\int \mathcal{L}dt$
- Increased $t\overline{t}$ cross-section (due to higher CM energy)
 - ▶ More top quarks, lower statistical error
 - ▶ Better handle on backgrounds and systematics
- Improved tracking, higher b-tagging efficiency
 - Lower systematic errors
- Sensitivity at CDF during Run II is the subject of this talk

The Run II Collider Detector at Fermilab (CDF)

A general purpose solenoidal detector at FNAL...

- Silicon Vertex Detector (SVX)
 - \triangleright Double-sided to provide r-z readout
 - ▶ Three-dimensional vertex reconstruction
 - Excellent for secondary vertex detection close to the interaction point (IP)
 - ▶ Ideal for b-quark "tagging"

The Run II Collider Detector at Fermilab (CDF)

...Actively taking data

- Central Outer Tracker (COT)
 - \triangleright Charged particle tracking in the region $|\eta| \leq 1.0$
 - Open-cell drift chamber contained within volume of the solenoid
 - ho p_T resolution of $\delta p_T/p_T^2 \simeq 0.3\%$ (GeV/c) $^{-1}$

Calorimetry

- \triangleright Measures EM and HAD energy deposition in the region $|\eta| \leq 3.0$
- ightharpoonup Average resolution EM $\sim 20\%/\sqrt{E_T}$
- ho Average resolution HAD $\sim 60\%/\sqrt{E_T}$

Muon Detectors

- Muon detection through four layers of single-wire drift cells
- > Furthest detectors from the IP
- ightharpoonup Muon detection in $|\eta| \leq 1.5$ and nearly complete coverage in ϕ

Data acquisition and storage

- ▶ Three-tier trigger system
- Upon acceptance by all three triggers, event written out for permanent storage
- ightharpoonup Average event size $\sim 250~{
 m kB}$

A generator-level sensitivity study

Generation of signal distributions for each helicity

- Generated 20,000 $t\overline{t}$ events for each helicity value
- Extracted both $\cos \theta^*$ and lepton p_T distributions
- This study was done at the generator level, no detector simulation

Fitting the signal distributions

- Each of the signal distributions were fit with user-defined functions
- This was done for each method and each helicity
- Fitting the distributions creates two sets of signal templates
 - $ightharpoonup T^-$, T^0 , and T^+
 - One set for each of the two methods

The likelihood fitter

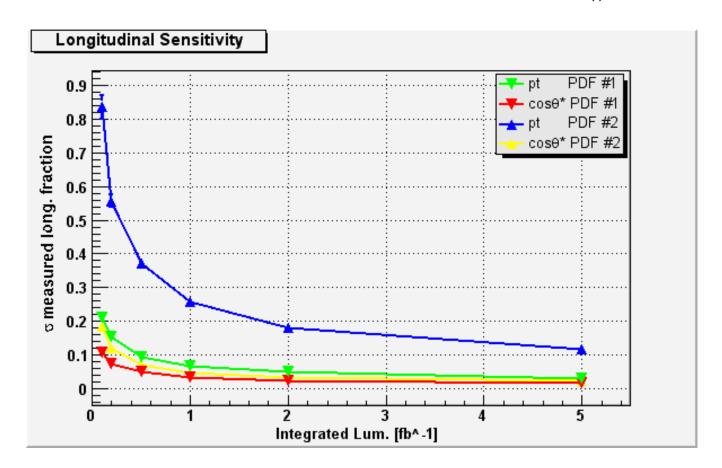
Used an unbinned maximum likelihood fitter

- Used to perform generator-level sensitivity study
- Fitter has the form:

$$\mathcal{L} = \prod_{i=1}^{N} P_i^{sig}$$

- ▶ i is the index over input events
- $ightharpoonup P_i^{sig}$ is the signal probability density function (PDF)
- Two signal PDFs are considered:

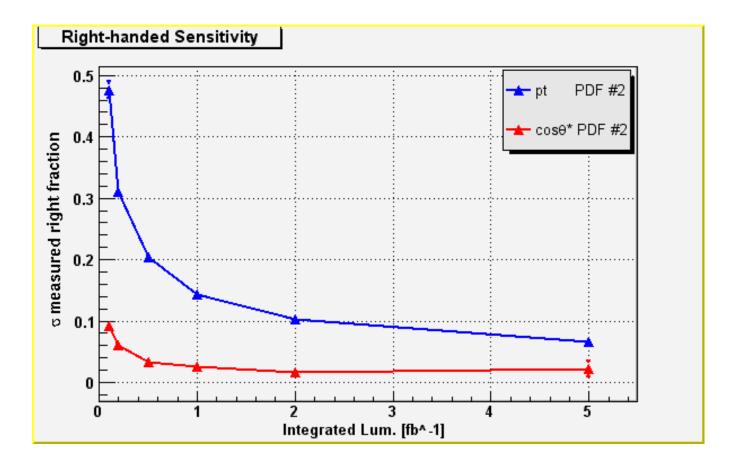
$$P^{sig} = (1 - F_0)T^- + F_0T^0$$


$$P^{sig} = (1 - F_0 - F_{+1})T^- + F_0T^0 + F_{+1}T^+$$

- $ightharpoonup T^-$, T^0 and T^+ describe the signal components
- Fitter developed using the RooFit toolkit for data modeling
 - http://roofit.sourceforge.net

The sensitivity study results

Study carried out using lepton- p_T and $\cos heta^*$ templates


- 1000 pseudo-experiments for several data sizes
- ullet Fitted values for $F_{\lambda_W=0}$ and $F_{\lambda_W=+1}$ obtained
- ullet Plotted below is the absolute uncertainty on measured $F_{\lambda_W=0}$

The sensitivity study results

Study carried out using lepton- p_T and $\cos heta^*$ templates

- 1000 pseudo-experiments for several data sizes
- \bullet Fitted values for $F_{\lambda_W=0}$ and $F_{\lambda_W=+1}$ obtained
- ullet Plotted below is the absolute uncertainty on measured $F_{\lambda_W=+1}$

Conclusions

Generator-level background-free sensitivity study

- ullet Lepton p_T and $\cos heta^*$ methods show comparable sensitivity
- ullet With $\sim\!$ 2 fb $^{-1}$ of data measurement of transverse and longitudinal fractions to \pm 2% (stat)
 - ▶ This study neglected detector effects and backgrounds
- Systematic uncertainties will certainly come into play
 - ightharpoonup From Run I with \sim 0.1 fb $^{-1}$ this was \pm 13% (syst)

More realistic simulations are already underway

- Starting to include backgrounds
- ullet Working on the mass fitter which is needed for $\cos heta^*$ method

We are starting to look at W polarization in Run II data

See you next year!